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ABSTRACT

Two classes of mathematical programs with optimization problems
in the constraints have recently been studied by two of the authors.
The first class involves mathematical programs in the constraints,
and the second class involves max-min problems in the constraints.
A computational technique has been developed and shown to be
effective in solving problems of the first class. We show here
that the computational technique can be applied to problems of the

apparently wider second class.
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INTRODUCTION

Reference 1] presents theory, interpretations, and an example
of mathematical programs with optimization problems in the constraints.
Reference [2] presents a computer program for solving mathematical
programs with nonlinear programs in the constraints, A future paper
will discuss defense applications of these types of mathematical
systems.

When the optimization problems in the constraints are two-sided
optimization problems, the overall problem cannot be computationally
solved directly by the methods given in Reference [2]. This paper
shows how, for a large class of two-sided optimization problems in
the constraints, the overall problem can be reformulated to yield
one~-sided optimization problems in the constraints in a form suitable

for solution using the methods given in Reference [2].




'PROBLEM DESCRIPTION

In Reference [1] Bracken and McGill discuss the following problems:

A) minimize 3(g)

g
subject to
£ € E,
i i
min Y(§:V>>O> EIR N > M
i i
v e N
and
B) minimize f(x)
X
subject to
X e X,
max min gl(x,ul,vl) >0 ,1i=1, ..., m,

uleul(x) vleVl

These are shown to be convex programs under appropriate assumptions

. i i il i i
on the functions %, y , £, g~ and the sets =, N°, X, U7(x), and V-,
In Reference [2], the same authors describe a computational procedure

which has been implemented for solving convex programs of type A.




The constraint set for problems of type B was noted in Reference
[1] to be equivalent to the set
{x e X: min gl(x,ul,vl) > 0 for some ut e Ul(x), i=1,...,m}.
i 1
v eV
This paper expands upon this equivalence and shows that problems of

type B can be recast into problems of type A and solved by the

procedure given in Reference [2].




THEORY

Define the following problem:

C) minimize f(x)

1 m
(X, u7y, ..., u)

subject to
x e X,
ul e Ul(x) i=1, ..., m,
min gl(x,ul,vl) > 0, i=1, ..., m,
i i -
v eV

Note that problem C has the form of problem A when the vector € is

1 m

replaced by the vector (x, u™, ..., u ). Also note that we make no

convexity or concavity assumptions in the theorem which follows,
The computational procedure requires such, however, and the reader
is feferred to References l] and 27 for further details. We
assume that all of the max or min operations used in the theorem
exist, This assumption is valid, for example, when the functions

f, gl, cens gm are continuous and the sets X, vii = 1, ..., m),

m i
u

and {(x, ul, ceesy U ) € Ul(x), i=1, ..., m} are compact.




THEOREM. Problem B is equivalent to problem C.
Proof, Let X ¢ X be a feasible point of problem B. Then there

~1 ~n —i
are vectors u”7, ..., u such that u” solves
. i— i i
max min g (x, u, v7)
i,1i,= i1
u el (x) v ev
and, moreover, this quantity is nonnegative. Hence,
- i —
u e U(x)

and

ie., (X, Y, ..., T™) is feasible to C.
Now let (X, El, ..., u") be feasible to problem C. Then

X e X, e Ul(i) (i=1, ..., m), and

h.(X, U') = min g™(%, o, v') > 0 i=1, ..., m
* i
veV
Thus
max hi(;’ ) >0, i=1, ..., m
u el (%)

so that, in fact, x is feasible to B .
Since the objective function f(x) is common to both problems, it

follows that problems B and C have a common optimal value, completing

the proof.
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